The compound you described, **[5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-3-pyrazolyl]-(4-morpholinyl)methanone**, is a **synthetic organic molecule** with a complex structure. It's important to understand that the name itself doesn't reveal much about its function or importance. To assess its significance, we need to delve into the research that has been conducted on this compound or related compounds.
**Here's what we can glean from the name:**
* **Pyrazolyl:** This indicates the presence of a pyrazole ring, a five-membered heterocyclic ring containing two nitrogen atoms.
* **Chlorophenyl:** This suggests the presence of phenyl rings (benzene rings) substituted with chlorine atoms.
* **Morpholinyl:** This indicates the presence of a morpholine ring, a six-membered heterocyclic ring containing an oxygen and nitrogen atom.
* **Methanone:** This refers to a carbonyl group (C=O) connected to a methane (CH2) group.
Based on this structural information, it's possible that this compound could have:
* **Pharmacological activity:** Pyrazole derivatives are known to exhibit various pharmacological activities, including anti-inflammatory, analgesic, and anticonvulsant effects. The presence of chlorine atoms and the morpholine group might contribute to specific interactions with biological targets.
* **Potential as a synthetic intermediate:** This compound's structure could be modified to create other interesting compounds with specific properties.
**To understand the importance of this specific compound, we need to know more about:**
* **The research area:** What are the scientists studying? Are they looking for new drugs, exploring the synthesis of new materials, or investigating specific chemical reactions?
* **The specific biological or chemical properties:** What effects does this compound have on cells, tissues, or chemical processes?
* **Published research:** Have any scientific articles or patents been published on this compound?
**In conclusion, the importance of [5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-3-pyrazolyl]-(4-morpholinyl)methanone cannot be determined solely from its name. To understand its significance, we need to know the context of its research and its specific properties.**
ID Source | ID |
---|---|
PubMed CID | 5128071 |
CHEMBL ID | 1524396 |
CHEBI ID | 115080 |
Synonym |
---|
smr000179335 |
[5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-1h-pyrazol-3-yl](morpholino)methanone |
MLS000326790 |
OPREA1_522100 |
CHEBI:115080 |
AKOS005093848 |
[5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)pyrazol-3-yl]-morpholin-4-ylmethanone |
HMS2283N15 |
5N-597S |
477713-35-2 |
4-[5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-1h-pyrazole-3-carbonyl]morpholine |
CHEMBL1524396 |
Q27196924 |
[5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-3-pyrazolyl]-(4-morpholinyl)methanone |
Class | Description |
---|---|
pyrazoles | |
ring assembly | Two or more cyclic systems (single rings or fused systems) which are directly joined to each other by double or single bonds are named ring assemblies when the number of such direct ring junctions is one less than the number of cyclic systems involved. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Cruzipain | Trypanosoma cruzi | Potency | 25.1189 | 0.0020 | 14.6779 | 39.8107 | AID1476 |
acid sphingomyelinase | Homo sapiens (human) | Potency | 89.1251 | 14.1254 | 24.0613 | 39.8107 | AID504937 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 18.3564 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 23.2626 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 17.7828 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
IDH1 | Homo sapiens (human) | Potency | 20.5962 | 0.0052 | 10.8652 | 35.4813 | AID686970 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 18.8600 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 20.5962 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 8.9125 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 12.5893 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 25.1189 | 1.9953 | 25.5327 | 50.1187 | AID624288 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |